
Waratek
Security Rules

Best Practices
Document version: 2

Last update: Aug 20th, 2024

Edited By: Keegan Henckel-Miller

www.waratek.com sales@waratek.com +1 872 469 8605

https://waratek.com/
mailto:sales@waratek.com

Overview
Welcome to the Best Practices guide to the Waratek Java Security platform — the last and
only security platform you will need to ensure your Java applications are fully protected
against both known threats and zero days. Waratek’s advanced Runtime Application Self-
Protection (RASP) platform works by integrating your application code base with
immutable rules that are individually designed to detect and remediate vulnerabilities
without the need for changes to the code base or system downtime. This allows the
platform to deliver complete coverage on your java systems with negligible effects on
application performance (less than two percent.)

In this guide, we’ll take a look at some of the most common avenues attackers take to
exploit Java systems and explain how Waratek detects and remediates those threats
before they ever come near sensitive systems or data. These include deserialization
attacks, session fixation, CSRF, open redirects, path traversal and LFI, cross site scripting
and other common vulnerabilities.

We’ll also offer some tips to aid your setup process and help you get the most out of your
Waratek protection. You’ll learn why Waratek is the best choice for securing your
applications, ensuring compliance, and keeping your data safe. So grab your coffee, settle
in, and let’s get started making your Java applications bulletproof.

www.waratek.com sales@waratek.com +1 872 469 8605 1

https://waratek.com/
mailto:sales@waratek.com

About Waratek
Some of the world's leading companies use Waratek’s Java Security Platform to patch,

secure and upgrade their mission critical applications. A pioneer in the next generation of

application security solutions, Waratek makes it easy for security teams to instantly detect

and remediate known vulnerabilities with no downtime, protect their applications from

known and Zero Day attacks, and virtually upgrade out-of-support Java applications – all

without time consuming and expensive source code changes or unacceptable

performance overhead.

Waratek is the Cybersecurity Breakthrough Awards 2019 Overall Web Security Solution of

the Year, is a previous winner of the RSA Innovation Sandbox Award, and more than a

dozen other awards and recognitions. For more information, visit www.waratek.com.

www.waratek.com sales@waratek.com +1 872 469 8605 2

https://waratek.com/
mailto:sales@waratek.com

Table of Contents
Unsafe Deserialization of Untrusted Data 4

Session Fixation 9

Cross-Site Request Forgery 12

Open Redirect 19

Path Traversal & Local File Inclusion 23

Cross Site Scripting (XSS) 26

System Hardening against common vulns such as XXE &
SSRF 30

www.waratek.com sales@waratek.com +1 872 469 8605 3

https://waratek.com/
mailto:sales@waratek.com

Unsafe Deserialization

of Untrusted Data

magnifying-glass Vulnerability Overview

Deserialization of untrusted data — also called insecure deserialization —
occurs when applications deserialize data from untrusted sources without sufficiently
verifying that the resulting payload will be valid and therefore the in-memory object will be
safe to use. This is considered to be one of the most damaging types of attacks, potentially
leading to a complete compromise of a vulnerable system. To make matters worse,
deserialization attacks have become one of the most widespread security vulnerabilities to
occur over the past few years. One found that in a sample of 50
web applications, 40% were vulnerable to insecure deserialization attacks. The researchers
also found insecure deserialization vulnerabilities present in 34 percent of Java
applications.

Serialization is the process of converting an object in memory into a stream of bytes in
order to store it into the filesystem or transfer it to another remote application.
Deserialization is the reverse process that converts the serialized stream of bytes back to
an object in memory. All main programming languages, such as Java and .NET, provide
facilities to perform native serialization and deserialization. This makes them the most
vulnerable to attack. A deserialization attack is designed to create a gadget chain that will
reach these privileged platform functions and execute the payload on the system. The
payload could abuse the filesystem, the operating system, or system resources.

Deserialization vulnerabilities have been a significant security concern in Java applications
for over a decade. The issue gained prominence with the discovery of several high-profile
vulnerabilities, notably in widely-used Java libraries like Apache Commons and the Spring
Framework. Deserialization vulnerabilities occur when untrusted data is used to reconstruct
an object in memory. If not properly validated, this process can be exploited by attackers
to execute arbitrary code, resulting in serious security breaches.

(CWE-502)

study by the SANS Institute

www.waratek.com sales@waratek.com +1 872 469 8605 4

https://cwe.mitre.org/data/definitions/502.html
https://www.sans.org/white-papers/39920/
https://waratek.com/
mailto:sales@waratek.com

Deserialization vulnerabilities are not limited to language deserialization APIs but also
encompass libraries that make use of other serialization formats such as XML and JSON.
The attack process can be summarized in the following steps:

1 A vulnerable application accepts user-supplied serialized objects.

2 An attacker performs the attack by:
 creating a malicious gadget chain (sequence of method calls)
 serializing it into a stream of bytes using the serialization API
 sending it to the application

3 Deserialization occurs when the vulnerable application reads the received
stream of bytes and tries to construct the object.

4 When a malicious object gets deserialized, the gadget chain is executed and
the system is compromised.

thumbs-up Recommended Security Controls

According to the and recommendations, to be protected against
Deserialization attacks, applications must:

 Minimize privileges before deserializing from a privileged context.
 Not invoke potentially dangerous operations during deserialization.

CERT MITRE

www.waratek.com sales@waratek.com +1 872 469 8605 5

https://www.cisa.gov/sites/default/files/publications/infosheet_US-CERT_v2.pdf
https://www.mitre.org/
https://waratek.com/
mailto:sales@waratek.com

gears How Waratek’s Protection Works

The goal of deserialization is to convert a stream of bytes into an object in memory.
The runtime platform (e.g. JVM) should allow this conversion but should not allow
more privileged operations that are outside of the scope of the object deserialization
API. Deserialization attacks depend on invoking API methods that are considered to
be privileged, such as , in order to perform an attack.java.lang.Runtime.exec()

Securing against deserialization vulnerabilities is particularly challenging because these
vulnerabilities often lurk deep within the application stack, making them difficult to detect
and mitigate with perimeter-based solutions like Web Application Firewalls (WAFs). Unlike
RASP (Runtime Application Self-Protection) solutions that operate within the application,
WAFs primarily focus on monitoring and filtering traffic at the network edge. This external
positioning limits their ability to detect and prevent attacks that exploit internal application
logic, such as deserialization vulnerabilities.

In accordance with the CERT, MITRE and OWASP recommendations and observations,
Waratek protects against deserialization attacks by addressing the problem
from a privilege escalation and an API abuse point of view.

The issue with serialization is that until a payload is reconstructed, there is no good way to
know whether or not it contains harmful code. Our platform gets around this obstacle by
executing the operation in a test environment to observe what happens without the risk of
a full-on attack. On specific object deserialization operations (called boundaries), the
Waratek agent constructs a dynamic restricted micro-compartment on the execution
thread and continues the object deserialization inside it. Waratek de-escalates the
privileged operations in the micro-compartment and monitors the usage of resources. If a
privileged function is invoked inside the micro-compartment, the execution is terminated
and the payload is not executed. The same logic applies for Denial of Service attacks, if
resources are abused inside the micro-compartment, then the deserialization process will
be terminated and the attack will be prevented before the system resources are
exhausted. The micro-compartment is destroyed on a non-malicious object
deserialization completion and privilege de-escalation is revoked on the executing thread.

(CWE-502)
(CWE-250) (CWE-227)

www.waratek.com sales@waratek.com +1 872 469 8605 6

https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/277.html
https://waratek.com/
mailto:sales@waratek.com

Waratek’s protection capabilities support popular deserialization APIs and formats that
can be used across the application. Additionally, the Waratek agent is able to protect
against attacks regardless of the untrusted source. For example, if the serialized data is
coming from an HTTP client (such as an external web request) or data coming from
another internal system (such as a message queue), it is terminated all the same before it
is able to cause any harm within your application.

This process does not rely on previous knowledge of publicly available gadget chains and
exploits. That key element saves our users a lot of time profiling their applications’ new
functionalities when changes are made. You can deploy new versions of your applications
without having to make any adjustments to your protection mechanisms.

Waratek offers protection against Deserialization attacks via the rules.
Currently, there are 2 deserial rules:

 rule, that protects against Remote Code Execution (RCE)
deserialization attacks

 rule, that protects against Denial-of-Service (DoS)
deserialization attacks

Enabling these rules sets up the privilege de-escalation runtime micro-
compartmentalization framework. This framework monitors and controls memory
allocation, CPU utilization, circular dependency depths, code injection, and privilege
escalation during deserialization operations.

deserial:harden

 The deserial:harden:system

 The deserial:harden:dos

shield-check Protective Action

When the deserial rule is enabled in deny mode and a deserialization attack is identified,
the malicious deserialization operation is terminated and a Java exception is thrown back
to the application, in accordance with the deserialization API.

For example:

com.waratek.AllowDeserialPrivileges=java.lang.SecurityManager.<init>(),java.la
ng.System.getenv()

www.waratek.com sales@waratek.com +1 872 469 8605 7

https://waratek.com/
mailto:sales@waratek.com

medal Best Practices

Because of the criticality of the vulnerability as well as because users typically are
unaware if there are components anywhere in their Java stack, Waratek recommends
enabling both deserial rules in order to be protected against both remote code execution
and denial of service deserialization attacks.

link References
 https://cwe.mitre.org/data/definitions/502.html
 https://owasp.org/www-community/vulnerabilities/Insecure_Deserializatio
 https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88487787

www.waratek.com sales@waratek.com +1 872 469 8605 8

https://cwe.mitre.org/data/definitions/502.html
https://owasp.org/www-community/vulnerabilities/Insecure_Deserialization
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88487787
https://waratek.com/
mailto:sales@waratek.com

Session Fixation
magnifying-glass Vulnerability Overview

Session Fixation is an attack that permits an attacker to hijack a valid user
session. Authenticating a user, or establishing a new user session without invalidating any
existing session identifier gives an attacker the opportunity to steal authenticated
sessions.

Session fixation attacks have been a well-known security issue in web applications for
many years, particularly in environments where session management is handled
incorrectly. This type of attack occurs when an attacker fixes a user's session ID before the
user authenticates — the HTTP Session ID remains the same before and after user logs-in.
This permits an attacker to “fix” a specific Session ID and hijack a valid user session. In
other words, the Session ID can be controlled by the attacker.

Once the user logs in, the attacker, who already knows the fixed session ID, can hijack the
session and gain unauthorized access to the user’s account. These attacks exploit
weaknesses in how sessions are managed and are especially dangerous because they
can occur without the user ever knowing.

Traditionally, preventing session fixation attacks has relied on perimeter-based solutions
like Web Application Firewalls (WAFs) or relying on developers to implement session
management best practices, such as regenerating session IDs upon authentication.
However, WAFs have limited effectiveness against session fixation because they operate at
the network level and lack the context needed to monitor session management processes
within the application. Similarly, relying on manual coding practices to secure sessions can
be error-prone, particularly in large, complex applications where sessions are managed
across multiple components.

(CWE-384)

www.waratek.com sales@waratek.com +1 872 469 8605 9

https://cwe.mitre.org/data/definitions/384.html
https://waratek.com/
mailto:sales@waratek.com

thumbs-up Recommended Security Controls

According to the OWASP and MITRE recommendations, to be protected against Session

Fixation, applications must:

1 Invalidate any existing session identifiers prior to authorizing a new user

session

2 Regenerate the session ID after any privilege level change within the associated

user session

gears How Waratek’s Protection Works

Waratek’s advanced runtime protection offers a more robust and comprehensive

solution to mitigating session fixation attacks. Waratek’s security policies are

embedded directly within the runtime environment, allowing for real-time monitoring

and enforcement of session management best practices. By leveraging Waratek’s

Session rules, administrators can ensure that session IDs are regenerated securely

upon user authentication and that sessions are properly managed throughout the

application's lifecycle.

The SessionFix rules can be safely enabled across all Java applications to protect against

session fixation attacks. These rules work by enforcing secure session management

practices at the runtime level, ensuring that session IDs cannot be fixed or reused by an

attacker. Importantly, Waratek’s SessionFix rules require minimal configuration and can be

deployed without disrupting your existing application infrastructure.

Waratek offers protection against Session Fixation attacks via the

 rule. This rule hooks into the session authentication

mechanism of the Servlet API and monitors user authentication processes. When a user

successfully authenticates then the Waratek agent regenerates the Session ID of the user’s

HTTP Session. This proactive security control remediates the vulnerability and eliminates

the attack surface for Session Fixation attacks. Because no Session Fixation attacks are

possible, this rule does not log any security events for attacks.

session:protect:regenerateSID

www.waratek.com sales@waratek.com +1 872 469 8605 10

https://waratek.com/
mailto:sales@waratek.com

Let’s examine a high-level description of
the Session ID regeneration workflow that
Waratek performs:

1

User enters the correct
credentials.

2

System successfully
authenticates the user.

3

Existing HTTP session content is
moved to temporary cache.

4

Existing HTTP session is
invalidated

(HttpSession.invalidate()).

5

A new HTTP session is created for
the user.

(HttpSession.invalidate()).

6

The previously cached session
data is restored into the newly
created HTTP session.

7

The user goes to a successful
login landing page using a new
session ID.

shield-check Protective Action

The Session Fixation rule is a proactive rule. It is triggered proactively before a potential
attack and eliminates the attack vector for Session Fixation.

medal Best Practices

We recommend that users enable the XSS security rule even in blocking mode to be
protected against XSS attacks. Applications vulnerable to XSS attacks are still vulnerable to
Session Fixation or Session Hijacking attacks even if the Session Fixation rule is enabled.

link References
https://owasp.org/www-community/attacks/Session_fixation

https://cwe.mitre.org/data/definitions/384.html

www.waratek.com sales@waratek.com +1 872 469 8605 11

https://owasp.org/www-community/attacks/Session_fixation
https://cwe.mitre.org/data/definitions/384.html
https://waratek.com/
mailto:sales@waratek.com

Cross-Site Request Forgery
magnifying-glass Vulnerability Overview

Cross-Site Request Forgery or CSRF is an attack that occurs when the web
application does not, or can not, sufficiently verify whether a well-formed, valid, consistent
HTTP request was intentionally provided by the user who submitted the request. When this
happens, an attacker can trick a user into executing unwanted actions on a web
application where the user is authenticated.

These attacks work because browser requests automatically include all cookies including
session cookies. Therefore, if the user is authenticated to the site, the site cannot
distinguish between legitimate requests and forged requests. This is particularly
dangerous because it can lead to unauthorized transactions, data theft, or even full
account takeover, all without the user’s knowledge.

CSRF attacks have been a persistent threat in web security for over a decade. Traditionally,
risk in this area has been mitigated by implementing anti-CSRF tokens, validating referer
headers, requiring re-authentication for sensitive actions, or some combination of these
techniques.

While these methods can be effective, they are not foolproof. Anti-CSRF tokens, for
instance, require proper implementation and can be bypassed if the token is not validated
correctly or is exposed. Additionally, referer header validation is not reliable, as some
browsers and privacy-focused users may block or omit referer headers, rendering this
method ineffective. These perimeter-based solutions also rely heavily on developers
correctly implementing security measures across all relevant parts of the application,
which can be a challenge in large, complex systems.

(CWE-352)

www.waratek.com sales@waratek.com +1 872 469 8605 12

https://cwe.mitre.org/data/definitions/352.html
https://waratek.com/
mailto:sales@waratek.com

thumbs-up Recommended Security Controls

According to the OWASP and MITRE recommendations, there are a few approaches to
mitigate CSRF attacks. Each of these approaches is suitable for specific types of web
applications.

The most commonly used and recommended solution is via the Synchronizer Token
Pattern. Using this security control, CSRF tokens are generated on the server-side. They can
be generated once per user session or for each request. Per-request tokens are more
secure than per-session tokens as the time range for an attacker to exploit the stolen
tokens is minimal. However, this may result in usability concerns. For example, the "Back"
button browser capability is often hindered as the previous page may contain a token that
is no longer valid. Interaction with this previous page will result in a CSRF false positive
security event at the server. In per-session token implementation after initial generation of
a token, the value is stored in the session and is used for each subsequent request until the
session expires.

When an HTTP request is issued by the client, the server-side component must verify the
existence and validity of the token in the request compared to the token found in the user
session. If the token was not found within the request, or the value provided does not
match the value within the user session, then the request should be aborted, the user
session terminated and the event logged as a potential CSRF attack in progress.

CSRF tokens prevent CSRF attacks because without knowing the correct CSRF token,
attackers cannot create valid HTTP requests to the backend server.

Another security control is the validation of the HTTP request’s origin via standard HTTP
request headers. There are two steps to this mitigation, both of which rely on examining an
HTTP request header value:

1 Determining the origin the request is coming from (source origin) which can be
achieved via Origin or Referer headers.

2 Determining the origin the request is going to (target origin). On the server side, if
both are verified as matching, the request is accepted as legitimate (meaning it's
the same origin request) and if not we discard the request (meaning that the
request originated from cross-domain). Such headers are deemed reliable and

www.waratek.com sales@waratek.com +1 872 469 8605 13

https://waratek.com/
mailto:sales@waratek.com

trustworthy as they cannot be altered programmatically (using JavaScript with
an XSS vulnerability) since they fall under the forbidden headers list, meaning that
only the browser can set them.

gears How Waratek’s Protection Works

Waratek offers protection against CSRF attacks via 2 different rules:
 The CSRF:STP rule (rules version 1.0)
 The CSRF Same-Origins HTTP ARMR rule (rules version 1.3)

Users can enable either one of these rules or both. OWASP recommends using both
security controls, however not all application environments are applicable for both
types of security controls.

The CSRF Synchronizer Token Pattern (STP) rule

At a high-level, the CSRF:STP rule stops the processing of the JSP/Servlet if the received
HTTP request is missing or carries an incorrect CSRF token. The CSRF:STP rule enables the
Synchronizer Token Pattern protection, which instructs Waratek to inject CSRF tokens in
specific HTML elements. The HTML elements covered are:

 elements in which the token is injected as a hidden input field.
 elements in which the token is injected in the URL specified by its href attribute.

 and elements in which the token is injected in the URL specified by
their src attributes.

Enabling the default CSRF STP rule ensures all HTTP POST requests will be

protected by validating the CSRF token present in the requests. HTTP POST

requests are the most important types of requests to protect because they are

typically state-changing, whereas HTTP GET requests are typically not.

 <form>
 <a>
 <frame> <iframe>

www.waratek.com sales@waratek.com +1 872 469 8605 14

https://waratek.com/
mailto:sales@waratek.com

Using the CSRF:CONFIG rule, users have the option to:

By default only HTTP POST requests are protected. If protection for HTTP GET requests is also
required, use the csrf:config:methods rule.

By default all HTTP endpoints are protected. If protection for specific HTTP endpoints must
be disabled use the csrf:config:whitelist rule.

AJAX requests are not supported by the CSRF:STP rule because the CSRF token is not
injected into client-side Javascript code that generates dynamic requests such as AJAX.
AJAX requests typically carry the X-Requested-With header. If the application uses AJAX
requests use the csrf:config:validateXRequestedWithHeader=false rule to disable
validation for AJAX requests.

By default a different CSRF token is used for POST requests and yet another is used for GET
requests. The benefit of this is to protect the CSRF token for POST requests in case the CSRF
token for GET requests gets leaked. To disable this and use a single token instead then use
the csrf:config:singleToken=true rule.

By default the name of the CSRF token used by Waratek is “_X-CSRF-TOKEN”. In the rare
case where this name is used by a different HTTP parameter, then use the
csrf:config:tokenName rule to rename the HTTP parameter that Waratek uses to carry the
CSRF token.

Enable protection for HTTP GET requests

Exclude / whitelist specific HTTP endpoints from protection

Exclude AJAX requests from protection

Use a different CSRF token for each HTTP method (POST / GET)

Rename the CSRF token used in the HTTP requests

www.waratek.com sales@waratek.com +1 872 469 8605 15

https://waratek.com/
mailto:sales@waratek.com

The CSRF Same-Origins Rule

At a high-level, the CSRF Same-Origin rule checks if the received HTTP request is coming
from a source origin different from the target origin. The source origin is determined by the
Origin, Referer, or X-Forwarded-For headers. The target origin is determined by the Host or
X-Forwarded-Host headers or by the hosts configured in the Waratek rule.

If the origin validation fails then the rule strips out all HTTP parameters, cookies and
payloads from the HTTP request, rendering it harmless.

If none of the Origin headers are present, the origin validation cannot be performed and
the rule blocks the HTTP request, according to the OWASP recommendations.

When enabling the default CSRF Same-Origins rule then all HTTP POST requests will be
protected by validating the standard Origin HTTP response headers that should be present
in the requests. Following is an example of the default CSRF Same-Origins rule:

app("CSRF Same-Origins"):

 requires(version: ARMR/1.6)

 http("Deny HTTP requests with invalid origin header (for

 all HTTP endpoints)"):

 request()

 validate(csrf: ["origins"])

 action(detect: "HTTP origin validation failed", severity: 7)

 endhttp

endapp

www.waratek.com sales@waratek.com +1 872 469 8605 16

https://waratek.com/
mailto:sales@waratek.com

If protection is needed for specific HTTP endpoints, the specific relative URIs of the HTTP
endpoints must be supplied in the request declaration of the Waratek CSRF rule. For
example:

app("CSRF Same-Origins"):

 requires(version: ARMR/1.6)

 http("Deny HTTP requests with invalid origin header (for

 specific HTTP endpoints)"):

 request(uri: ["/path/to/vulnerablePage.jsp",

 "/path/to/vulnerableServlet"])

 validate(csrf: ["origins"])

 action(detect: "HTTP origin validation failed", severity: 7)

 endhttp

endapp

shield-check Protective Action

When the CSRF:STP rule is enabled in protect mode and a CSRF attack is identified then the
malicious HTTP request is terminated and an HTTP 403 response is returned to the client.

When the CSRF Same-Origins rule is enabled in protect mode and a CSRF attack is
identified then the malicious HTTP request is not terminated but all its HTTP parameters
and cookies are considered malicious and are therefore stripped from the request,
rendering it safe.

medal Best Practices

We recommend you also enable the XSS security rule in blocking mode to be protected
against XSS attacks. If the application is vulnerable to XSS attacks then stealing the CSRF
tokens would be possible via XSS attacks. This would allow attackers to bypass the CSRF
protection.

www.waratek.com sales@waratek.com +1 872 469 8605 17

https://waratek.com/
mailto:sales@waratek.com

Because of the fact that the CSRF:STP rule might require some configuration, users are
advised to first enable the ARMR CSRF Same-Origins rule as the first layer of defense
against CSRF. Then, consider enabling the CSRF:STP rule only in relevant applications first in
monitoring / allow mode and later in blocking mode after the rule has been properly
configured.

Given that the CSRF Same-Origins rule depends on the presence of the Origin HTTP

header, it is recommended that the CSRF Same-Origins rule is enabled only

after ensuring all users are on an up-to-date browser version.

It is also recommended that users enable the ARMR CSRF Same-Origins rule only for the
vulnerable HTTP endpoints reported by their vulnerability scanners.

link References
 https://owasp.org/www-community/attacks/Session_fixation
 https://cwe.mitre.org/data/definitions/384.html

www.waratek.com sales@waratek.com +1 872 469 8605 18

https://owasp.org/www-community/attacks/Session_fixation
https://cwe.mitre.org/data/definitions/384.html
https://waratek.com/
mailto:sales@waratek.com

Open Redirect
magnifying-glass Vulnerability Overview

Open Redirect is a vulnerability that occurs when a user-controlled input is
used to construct a link to an external site, and the application uses that link in an HTTP
redirect without properly validating or sanitizing that input. The flaw commonly occurs
when the application sets the Location HTTP response header with an unsafe value from
the HTTP request. In other words, the HTTP redirect URI can be controlled by the attacker.

When exploited, this flaw allows attackers to redirect users to malicious websites, typically
by manipulating the redirection link within a legitimate site. This can be particularly
dangerous in the context of phishing attacks, where an attacker lures users into clicking on
a seemingly legitimate link that, unbeknownst to them, redirects to a malicious site
designed to steal their personal information.

The consequences can be severe — users may be tricked into divulging login credentials,
financial data, or personal identification details. Additionally, the reputation of the
compromised website can suffer significantly, as users lose trust in its security. Moreover,
attackers can use open redirects as a stepping stone for more sophisticated attacks, such
as session hijacking or the distribution of malware.

Open Redirect has been a persistent issue since the early days of web development,
coinciding with the rise of dynamic web applications. As websites began to rely more
heavily on user-generated content and complex redirection logic, the opportunities for
exploitation increased. Despite being a well-known issue, open redirects remain a
common vulnerability today, as developers often overlook the importance of validating
redirect URLs.

(CWE-601)

www.waratek.com sales@waratek.com +1 872 469 8605 19

https://cwe.mitre.org/data/definitions/601.html
https://waratek.com/
mailto:sales@waratek.com

thumbs-up Recommended Security Controls

According to the OWASP and MITRE recommendations, to be protected against

Open Redirect, applications must:

1 Assume all input is malicious. Use an "accept known good" input validation
strategy, i.e., use a list of acceptable inputs that strictly conform to specifications.
Reject any input that does not strictly conform to specifications, or transform it
into something that does.

2 If user input cannot be avoided, ensure that the supplied value is valid,
appropriate for the application, and is authorized for the user.

The most common scenario of an open redirect attack is when the attacker redirects the
user to an external, malicious, domain.

gears How Waratek’s Protection Works

Waratek Secure for Java offers protection against Open Redirect attacks via the
redirect:servlet:external rule. This rule uses the tainting engine to track all user input,
hooks into the Servlet API and monitors server-side HTTP redirect operations. When
an HTTP redirect operation occurs, the Waratek agent deems the redirect unsafe if
both the location URI is user-controllable (tainted) and if it is external to the
application’s domain. Tainted redirect locations to external root domains are not
allowed. The parameter "external" means that the rule detects or protects against
HTTP server-side redirects to an external root domain, different subdomain or IP
address from the application’s. For example, if the redirect:servlet:external:deny:info
rule is enabled and assuming that the application is hosted on the domain
www.example.com then user-controlled server-side HTTP redirects to the following
domains will be deemed malicious and blocked: www.google.com,
www.example.co.uk, test.example.com, test1.test2.example.com.

www.waratek.com sales@waratek.com +1 872 469 8605 20

https://waratek.com/
mailto:sales@waratek.com

If the application depends on user-controlled HTTP redirects to different subdomains of the
same root domain, then the parameter must be configured in the
rule: . Only user-controlled HTTP redirects to
different root domains will be considered malicious by the rule.

For example, if the rule is

enabled and assuming that the application is hosted on the domain

www.example.com then user-controlled server-side HTTP redirects to the following

domains will be deemed malicious and blocked:  
www.google.com, www.example.co.uk.   

Note that user-controlled server-side HTTP redirects to the following domains will be
deemed safe and allowed:  
test.example.com, test1.test2.example.com.

By default, when no taint source is specified in the rule, the open redirect rule protects
against attacks coming from HTTP requests. Users have the option to also enable
protection against open redirect attacks coming from other sources such as relational
databases and/or deserialization-based protocols such as RMI.

exclude=subdomains
redirect:servlet:external;exclude=subdomains

redirect:servlet:external;exclude=subdomains:deny:info

shield-check Protective Action

When the Open Redirect rule is enabled in protect mode and an Open Redirect attack is
identified then the malicious HTTP redirect operation is terminated.

www.waratek.com sales@waratek.com +1 872 469 8605 21

https://waratek.com/
mailto:sales@waratek.com

medal Best Practices

Waratek recommends not to enable the Open Redirect rule in blocking mode if the
application depends on user-controlled server-side HTTP redirect operations to external
domains. Consider enabling the rule in allow mode to monitor the server-side HTTP
redirect behavior of the application and keep track of external redirects.

link References
 https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
 https://cwe.mitre.org/data/definitions/601.html

www.waratek.com sales@waratek.com +1 872 469 8605 22

https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/601.html

https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html
https://cwe.mitre.org/data/definitions/601.html

https://waratek.com/
mailto:sales@waratek.com

Path Traversal &

Local File Inclusion

magnifying-glass Vulnerability Overview

Path Traversal has become more prevalent as dynamic content and
user interactions become more common in web applications, revealing weaknesses in
how input was sanitized and how file paths were managed. Over the years, numerous
high-profile attacks have exploited these vulnerabilities

Path traversal, also known as directory traversal, involves exploiting insufficient security
validation/sanitization of user-supplied input file paths, allowing attackers to access or
manipulate files outside of the intended directory. Local file inclusion is closely related,
where an application allows files to be included and executed as part of the request
without proper validation, leading to unauthorized access or execution of files on the
server.

Here’s how they work: a user-controlled input is used to construct a pathname that is
intended to identify a file or directory that is located underneath a restricted parent
directory. When the software does not properly neutralize special elements within the
pathname, malicious input can cause the pathname to resolve to a location that is outside
of the restricted directory.

When attackers exploit a Path Traversal vulnerability, they can manipulate file paths to
gain unauthorized access to files and directories outside the intended web root. This can
lead to exposure of sensitive files such as configuration files, user credentials, or even
system files that could be used to further compromise the server. LFI vulnerabilities take
this a step further by allowing attackers to include and execute files from the local server. If
an attacker successfully exploits LFI, they could potentially execute arbitrary code, gain full
control of the affected server, or escalate their privileges within the system. The impact of
these vulnerabilities ranges from data breaches and unauthorized access to complete
system compromise.

(CWE-22 - CWE-40)

www.waratek.com sales@waratek.com +1 872 469 8605 23

https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/40.html
https://waratek.com/
mailto:sales@waratek.com

thumbs-up Recommended Security Controls

According to the OWASP and MITRE recommendations, to be protected against Path
Traversal and Local File Inclusion, applications must:

 Assume all input is malicious. Use an "accept known good" input validation strategy, i.e.,
use a list of acceptable inputs that strictly conform to specifications. Reject any input
that does not strictly conform to specifications, or transform it into something that
does.

 If user input cannot be avoided, ensure that the supplied value is valid, appropriate for
the application, and is authorized for the user.

gears How Waratek’s Protection Works

Waratek offers protection against Path Traversal and Local File Inclusion attacks via
the path:traversal rule. This rule uses the tainting engine to track all user input, hooks
into Java’s File API and monitors file system operations. When a file system operation
occurs, the Waratek agent checks if the file system path contains user-controllable
(tainted) characters that traverse the filesystem.

The rule detects if user-controlled input is used to traverse the file
system using relative file system sequences such as ".." that can resolve to a location that
is outside of the current directory.

The rule detects if user-controlled input is used to traverse the file
system using absolute file system sequences such as "/path/to/file" that can resolve to a
location that is outside of the current directory.

Both rules can be enabled at the same time to be protected against both relative and
absolute Path Traversal attacks.

path:traversal:relative

path:traversal:absolute

www.waratek.com sales@waratek.com +1 872 469 8605 24

https://waratek.com/
mailto:sales@waratek.com

By default, when no taint source is specified in the rule, the Path Traversal rule protects
against attacks coming from HTTP requests. Users have the option to also enable
protection against path traversal attacks coming from other sources such as relational
databases and/or deserialization-based protocols such as RMI.

shield-check Protective Action

When the Path Traversal rule is enabled in deny mode and a path traversal attack is
identified then the malicious file system operation is terminated and a Java exception is
thrown back to the application, in accordance with the File API.

The Path Traversal rule is applicable and can be safely enabled in all applications, apart
from when applications depend on user-controlled file system paths that contain either
relative or absolute file system sequences.

medal Best Practices

Waratek recommends not to enable the Path Traversal rule in blocking mode if the
application depends on traversing the filesystem with user-controlled inputs. Instead,
consider enabling the rule in allow mode to monitor such operations.

link References
 https://owasp.org/www-community/attacks/Path_Traversal
 https://cwe.mitre.org/data/definitions/22.html

www.waratek.com sales@waratek.com +1 872 469 8605 25

https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-community/attacks/Path_Traversal
https://waratek.com/
mailto:sales@waratek.com

Cross Site Scripting (XSS)
magnifying-glass Vulnerability Overview

Cross-Site Scripting (XSS) (CWE-79) attacks are a type of injection, in which malicious
scripts are injected into otherwise benign and trusted websites. XSS attacks occur when an
attacker uses a web application to send malicious code, generally in the form of a browser
side script, to a different end user. This can lead to the theft of session cookies, defacement
of websites, and redirection of users to malicious sites.

XSS vulnerabilities have been a significant concern in web security since the late 1990s.
Despite advancements in security practices and tools, it remains one of the most common
vulnerabilities in web applications. It consistently ranks in the OWASP Top Ten, largely due
to the complexity of securing dynamic content and the diversity of attack vectors. Over the
years, XSS has evolved from simple script injections to more sophisticated attacks
targeting user sessions, data integrity, and even browser functionalities, highlighting the
ongoing challenge of securing modern web applications.

The XSS flaw occurs when:
 Data enters a Web application through an untrusted source, most frequently a web

request.
 The data is included in dynamic content that is sent to a web user without being

validated for malicious content.

There are 2 primary types of XSS vulnerabilities:
 Reflected XSS attacks are those where the injected script is reflected off the web server,

such as in an error message, search result, or any other response that includes some or
all of the input sent to the server as part of the HTTP request.

 Stored XSS attacks are those where the injected script is permanently stored on the
target servers, such as in a database.

www.waratek.com sales@waratek.com +1 872 469 8605 26

https://cwe.mitre.org/data/definitions/79.html
https://waratek.com/
mailto:sales@waratek.com

thumbs-up Recommended Security Controls

According to the OWASP and MITRE recommendations, to be protected against XSS
applications must:

 Understand the context in which the untrusted data will be used and the encoding that
will be expected.

 Use structured mechanisms that automatically enforce the separation between data
and code. These mechanisms may be able to provide the relevant quoting, encoding,
and validation automatically, instead of relying on the developer to provide this
capability at every point where output is generated.

gears How Waratek’s Protection Works

Waratek offers protection against XSS attacks via the xss:html rule. This rule uses the
tainting engine to track all user input, hooks into the web application’s Servlet API and
monitors all the write operations to the HTTP response. When a servlet write operation
occurs, the Waratek agent uses a streaming tainted HTML 5.0 lexer and checks if any
sequence of user-controllable (tainted) characters mutate the HTML syntax.

Using the default rule parameter (*), the XSS rule will:
 protect only against reflected XSS attacks (i.e. payloads coming from HTTP requests)
 protect the HTTP responses of all HTTP endpoints that produce HTML responses

To enable protection against stored XSS attacks then the rule parameter must be
configured with the value database. For example:

source

xss:html:*;source=database:deny:warn

www.waratek.com sales@waratek.com +1 872 469 8605 27

https://waratek.com/
mailto:sales@waratek.com

To enable protection against both reflected and stored XSS attacks then the source rule
parameter must be configured with the values httprequest, database. For example:

xss:html:*;source=httprequest,database:deny:warn

In most cases, defining the above XSS rule would provide the required level of protection.

Optionally, Waratek can also protect against attacks coming from deserialized data. For
example, from protocols such as RMI, JMX and the XMLReader that are based on Java or
XML deserialization. To enable protection against deserialized payloads add the
deserialization taint source in the rule’s taint source parameter. For example:

xss:html:*;source=httprequest,database,deserialization:deny:warn

To enable XSS security control, the XSS rule with the default parameter must be specified.
In some rare cases, users might need to specify additional XSS rules. There are 2 main
reasons for this:

 an application might produce HTTP responses whose output is HTML but the content-
type is incorrectly set by the application. For example, the HTTP endpoint generates
HTML but its content-type is XML.

 different HTTP endpoints might require different taint sources to be configured.

In such cases, users can define additional XSS rules and specify in each additional XSS rule
the relative path of the HTTP endpoint for which XSS protection must be enforced and
optionally the source of tainted data. For example:

xss:html:/pathOne;source=database,deserialization:deny:warn

xss:html:/pathTwo;source=httprequest,deserialization:allow:warn

www.waratek.com sales@waratek.com +1 872 469 8605 28

https://waratek.com/
mailto:sales@waratek.com

Finally, it is important to note that by default the XSS rule is enabled in a non-strict lexing
mode. This means that the XSS rule will allow certain user inputs to be injected (i.e. to
mutate the HTML syntax). These certain inputs have been vetted as non-malicious and are
only formatting. This allows common WYSIWYG editors and markup languages such as
markdown to be used. This feature is also called Safe XSS Injection. To disable the safe
injection feature and enable the strict lexing mode, use the rule
parameter. For example:

safeinjectionenabled

xss:html:*;safeinjectionenabled=false:deny:warn

shield-check Protective Action
When the XSS rule is enabled in deny mode and an XSS attack is identified then the
malicious HTTP output operation is terminated and no further writing to the HTTP response
is allowed.

The XSS rule is applicable and can be safely enabled for web applications that use the
Servlet API to handle HTTP requests and responses. Only reflected XSS and stored XSS for
HTML is currently supported. Protection against pure JavaScript or CSS (Cascading Style
Sheets) payloads are not yet supported.

medal Best Practices
In most cases, defining the following XSS rule would provide the required level of
protection:

xss:html:*;source=httprequest,database:deny:warn

link References
 https://cwe.mitre.org/data/definitions/79.html
 https://owasp.org/www-community/attacks/xss/
 https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

www.waratek.com sales@waratek.com +1 872 469 8605 29

https://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-community/attacks/xss/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

https://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-community/attacks/xss/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

https://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-community/attacks/xss/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

https://waratek.com/
mailto:sales@waratek.com

System Hardening against

common vulns such as XXE &
SSRF

magnifying-glass Vulnerability Overview

XML external entity injection (also known as XXE) is a web security vulnerability
that allows an attacker to interfere with an application's processing of XML data. It often
allows an attacker to view files on the application server file system, and to interact with
any backend or external systems that the application itself can access.

In some situations, an attacker can escalate an XXE attack to compromise the underlying
server or other backend infrastructure, by leveraging the XXE vulnerability to perform
server-side request forgery (SSRF) attacks. SSRF is a web security vulnerability that allows
an attacker to induce the server-side application to make HTTP requests to an arbitrary
domain of the attacker's choosing.

Note that SSRF and XXE are closely related, because they both involve
web-related technologies and can launch outbound requests to unexpected destinations.

(CWE-611)

 (CWE-918) (CWE-611)

thumbs-up Recommended Security Controls

According to the OWASP and MITRE recommendations, the safest way to prevent XXE is
always to disable DTDs (External Entities) completely.

www.waratek.com sales@waratek.com +1 872 469 8605 30

https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/611.html
https://waratek.com/
mailto:sales@waratek.com

gears How Waratek’s Protection Works

Currently, Waratek does not offer a dedicated security control that remediates XXE or
SSRF. However, using other security features available by the Waratek Java Security
platform it is possible to significantly reduce the impact of both XXE and SSRF. For
example, using the File and Network rules it can be possible to harden the system
and prohibit the vulnerable application to access unwanted resources. Please refer
to the Waratek User Guide for more information about the File and Network rules.

shield-check Protective Action

When a filesystem or network resource is accessed that is not allowed by a File or a
Network rule then the IO operation is terminated and an exception is thrown according to
the operation’s API. The File and Network rules can be enabled on any Java application.

medal Best Practices

To safely enable the File and Network rules in an environment, users must first understand
the filesystem and network activity patterns of the application. Identify the resources that
are required to be accessed by the application and then define File and Network rules to
whitelist these resources accordingly.

link References
 https://cwe.mitre.org/data/definitions/611.html
 https://cwe.mitre.org/data/definitions/918.html

www.waratek.com sales@waratek.com +1 872 469 8605 31

https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/918.html

https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/918.html

https://waratek.com/
mailto:sales@waratek.com

